This short note is designed to supplement the "early transcendentals" approach to calculus by giving a definition of $\exp (x)$ as a limit and computing its derivative. It is designed solely to provide complete details for the instructor. This proof is a bit easier than the usual proof because it uses powers of two instead of the positive integers in the definition of e^{x} as a limit.

Definition.

$$
\begin{equation*}
\exp (x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{2^{n}}\right)^{2^{n}} \tag{1}
\end{equation*}
$$

Proposition. The limit in the definition above exists for all real numbers x and satisfies

$$
\exp (x+y)=\exp (x) \exp (y)
$$

and

$$
\frac{d}{d x} \exp (x)=\exp (x)
$$

Lemma 1. For every real number x and every natural number n with $|x|<2^{n-1}$, we have that

$$
\begin{equation*}
\left(1+\frac{x}{2^{n-1}}\right)^{2^{n-1}} \leq\left(1+\frac{x}{2^{n}}\right)^{2^{n}} \leq \frac{1}{\left(1-\frac{x}{2^{n}}\right)^{2^{n}}} \leq \frac{1}{\left(1-\frac{x}{2^{n-1}}\right)^{2^{n-1}}} \tag{2}
\end{equation*}
$$

Proof. For $|x|<2^{n-1}$,

$$
\begin{equation*}
\left(1+\frac{x}{2^{n-1}}\right) \leq\left(1+\frac{x}{2^{n}}\right)^{2} \text { and }\left(1+\frac{x}{2^{n}}\right)\left(1-\frac{x}{2^{n}}\right) \leq 1 \tag{3}
\end{equation*}
$$

These inequalities are proved by multiplying out the two products. Raising the first inequality in (3) to the power 2^{n-1} proves the first inequality in (2), and replacing x by $-x$ proves the last inequality in (2). Raising the second inequality in (3) to the power 2^{n} proves the middle inequality in (2).

By Lemma 1, if $n \geq N$ and if $|x|<2^{N}$ then $\left(1+\frac{x}{2^{n}}\right)^{2^{n}}$ is increasing in n and bounded by $\left(1-\frac{x}{2^{N}}\right)^{-2^{N}}$. Thus the limit in the definition exists. If $x=\varepsilon$, with $0<|\varepsilon|<1$, then setting $n=1$ in the first and last inequalities of Lemma 1 and using induction we conclude

$$
\begin{equation*}
1+\varepsilon \leq \exp (\varepsilon) \leq \frac{1}{1-\varepsilon} \tag{4}
\end{equation*}
$$

and hence for $\varepsilon>0$,

$$
1 \leq \frac{\exp (\varepsilon)-1}{\varepsilon} \leq \frac{1}{1-\varepsilon}
$$

and for $\varepsilon<0$

$$
1 \geq \frac{\exp (\varepsilon)-1}{\varepsilon} \geq \frac{1}{1-\varepsilon}
$$

Thus

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\exp (\varepsilon)-1}{\varepsilon}=1 \tag{5}
\end{equation*}
$$

Lemma 2. For real numbers x and y,

$$
\exp (x+y)=\exp (x) \exp (y)
$$

Proof. If $x y \geq 0$ and $2^{n} \geq|x|+|y|$, then

$$
\left(1+\frac{x}{2^{n}}\right)\left(1+\frac{y}{2^{n}}\right)=\left(1+\frac{x+y}{2^{n}}+\frac{x y}{2^{2 n}}\right) \geq\left(1+\frac{x+y}{2^{n}}\right) .
$$

Raising this inequality to the power 2^{n} and using (1) proves that $\exp (x) \exp (y) \geq \exp (x+y)$. But also for $n \geq N$,

$$
\left(1+\frac{x+y}{2^{n}}+\frac{x y}{2^{2 n}}\right) \leq\left(1+\frac{x+y+\frac{x y}{2^{N}}}{2^{n}}\right)
$$

Raising this inequality to the power 2^{n} and using (1) again proves that

$$
\exp (x) \exp (y) \leq \exp \left(x+y+\frac{x y}{2^{N}}\right) \leq \exp (x) \exp (y) \exp \left(\frac{x y}{2^{N}}\right)
$$

Letting $N \rightarrow \infty$ we obtain, by (4), $\exp (x) \exp (y)=\exp (x+y)$ for all x, y satisfying $x y \geq 0$. If $x y<0$, the inequalities just reverse, proving Lemma 2.

Finally we conclude the proof of the Proposition using Lemma 2 and (5):

$$
\lim _{\varepsilon \rightarrow 0} \frac{\exp (x+\varepsilon)-\exp (x)}{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \exp (x) \frac{\exp (\varepsilon)-1}{\varepsilon}=\exp (x)
$$

Further properties:
i. Observe that $\exp (x)>0$ by Lemma 1, and $\exp (0)=1$. By the proposition $\exp (x)$ is a continuous, increasing function.
ii. Let $\ln (x)$ denote the inverse function. Set $e=\exp (1)$ and note $e>2$, by (4). By Lemma $2, \exp (n)=e^{n}$ for integers n, and so $\lim _{x \rightarrow+\infty} \exp (x)=\lim _{n \rightarrow+\infty} e^{n}=+\infty$. Similarly $\lim _{x \rightarrow-\infty} \exp (x)=0$. Thus $\ln (x)$ is defined for all positive numbers x. Since $\exp (0)=1$, we have that $\ln (1)=0$.
iii. It follows from Lemma 2 that $\ln (x y)=\ln (x)+\ln (y)$.
iv. For all rational numbers r and all real numbers $a>0$,

$$
a^{r}=\exp (r \ln (a))
$$

proof of iv. By Lemma 2 and induction, if $a>0$ and if n is an integer, then $a^{n}=[\exp (\ln a)]^{n}=$ $\exp (n \ln a)$. If m is also an integer, set $b=\exp \left(\frac{n}{m} \ln a\right)$. Then $b^{m}=\exp \left(m \cdot \frac{n}{m} \ln a\right)=a^{n}$, so that $a^{\frac{n}{m}}=b=$ $\exp \left(\frac{n}{m} \ln a\right)$.

We extend this fact about rational numbers $\frac{n}{m}$ to all real numbers by definition.
Definition. For real numbers x and a with $a>0$, we define

$$
a^{x}=\exp (x \ln (a))
$$

In particular, $e^{x}=\exp (x)$.
By Lemma $2, a^{x+y}=a^{x} a^{y}$.

Corollary.

$$
\frac{d}{d x} a^{x}=a^{x}(\ln a) \quad \text { and } \quad \frac{d}{d x} \ln (x)=\frac{1}{x}
$$

Proof.

$$
\frac{a^{x+h}-a^{x}}{h}=a^{x}\left(\frac{a^{h}-1}{h}\right)=a^{x}\left(\frac{e^{h \ln a}-1}{h \ln a}\right) \ln a .
$$

Now let $h \rightarrow 0$ and apply (5). To find the derivative of $\ln x$, write

$$
\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln (x)}{h}=\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln (x)}{\exp (\ln (x+h))-\exp (\ln (x))}=\frac{1}{\exp (\ln (x))}=\frac{1}{x}
$$

The quantity in the second limit is the reciprocal of a difference quotient for the derivative of \exp at the point $\ln x$.
D. Marshall

January 2012

