
This short note is designed to supplement the “early transcendentals” approach to calculus by giving a
definition of exp(x) as a limit and computing its derivative. It is designed solely to provide complete details
for the instructor. This proof is a bit easier than the usual proof because it uses powers of two instead of
the positive integers in the definition of ex as a limit.

Definition.

exp(x) = lim
n→∞

(

1 +
x

2n

)2
n

. (1)

Proposition. The limit in the definition above exists for all real numbers x and satisfies

exp(x+ y) = exp(x)exp(y)

and
d

dx
exp(x) = exp(x).

Lemma 1. For every real number x and every natural number n with |x| < 2n−1, we have that

(

1 +
x

2n−1

)2
n−1

≤

(

1 +
x

2n

)2
n

≤
1

(

1−
x

2n

)2
n ≤

1
(

1−
x

2n−1

)2
n−1

. (2)

Proof. For |x| < 2n−1,

(

1 +
x

2n−1

)

≤

(

1 +
x

2n

)2

and

(

1 +
x

2n

)(

1−
x

2n

)

≤ 1. (3)

These inequalities are proved by multiplying out the two products. Raising the first inequality in (3) to the
power 2n−1 proves the first inequality in (2), and replacing x by −x proves the last inequality in (2). Raising
the second inequality in (3) to the power 2n proves the middle inequality in (2). �

By Lemma 1, if n ≥ N and if |x| < 2N then (1 + x
2n
)2

n

is increasing in n and bounded by (1− x
2N

)−2
N

.
Thus the limit in the definition exists. If x = ε, with 0 < |ε| < 1, then setting n = 1 in the first and last
inequalities of Lemma 1 and using induction we conclude

1 + ε ≤ exp(ε) ≤
1

1− ε
, (4)

and hence for ε > 0,

1 ≤
exp(ε)− 1

ε
≤

1

1− ε
,

and for ε < 0

1 ≥
exp(ε)− 1

ε
≥

1

1− ε
.

Thus

lim
ε→0

exp(ε)− 1

ε
= 1. (5)

Lemma 2. For real numbers x and y,

exp(x+ y) = exp(x)exp(y).
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Proof. If xy ≥ 0 and 2n ≥ |x|+ |y|, then

(

1 +
x

2n

)(

1 +
y

2n

)

=

(

1 +
x+ y

2n
+

xy

22n

)

≥

(

1 +
x+ y

2n

)

.

Raising this inequality to the power 2n and using (1) proves that exp(x)exp(y) ≥ exp(x + y). But also for
n ≥ N ,

(

1 +
x+ y

2n
+

xy

22n

)

≤

(

1 +
x+ y + xy

2N

2n

)

.

Raising this inequality to the power 2n and using (1) again proves that

exp(x)exp(y) ≤ exp(x+ y +
xy

2N
) ≤ exp(x)exp(y)exp(

xy

2N
).

Letting N → ∞ we obtain, by (4), exp(x)exp(y) = exp(x + y) for all x, y satisfying xy ≥ 0. If xy < 0, the
inequalities just reverse, proving Lemma 2. �

Finally we conclude the proof of the Proposition using Lemma 2 and (5):

lim
ε→0

exp(x+ ε)− exp(x)

ε
= lim

ε→0
exp(x)

exp(ε)− 1

ε
= exp(x)

�

Further properties:
i. Observe that exp(x) > 0 by Lemma 1, and exp(0) = 1. By the proposition exp(x) is a continuous,

increasing function.
ii. Let ln(x) denote the inverse function. Set e = exp(1) and note e > 2, by (4). By Lemma 2, exp(n) = en

for integers n, and so limx→+∞ exp(x) = limn→+∞ en = +∞. Similarly limx→−∞ exp(x) = 0. Thus
ln(x) is defined for all positive numbers x. Since exp(0) = 1, we have that ln(1) = 0.

iii. It follows from Lemma 2 that ln(xy) = ln(x) + ln(y).

iv. For all rational numbers r and all real numbers a > 0,

ar = exp(r ln(a)).

proof of iv. By Lemma 2 and induction, if a > 0 and if n is an integer, then an = [exp(ln a)]n =
exp(n ln a). If m is also an integer, set b = exp( n

m
ln a). Then bm = exp(m · n

m
ln a) = an, so that a

n

m = b =
exp( n

m
ln a). �

We extend this fact about rational numbers n
m

to all real numbers by definition.

Definition. For real numbers x and a with a > 0, we define

ax = exp(x ln(a)).

In particular, ex = exp(x).

By Lemma 2, ax+y = axay.

Corollary.
d

dx
ax = ax(ln a) and

d

dx
ln(x) =

1

x
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Proof.
ax+h − ax

h
= ax

(

ah − 1

h

)

= ax
(

eh lna − 1

h ln a

)

ln a.

Now let h → 0 and apply (5). To find the derivative of lnx, write

lim
h→0

ln(x+ h)− ln(x)

h
= lim

h→0

ln(x+ h)− ln(x)

exp(ln(x + h))− exp(ln(x))
=

1

exp(ln(x))
=

1

x
.

The quantity in the second limit is the reciprocal of a difference quotient for the derivative of exp at the
point lnx. �
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